17 Lectures On Fermat Numbers


Download 17 Lectures On Fermat Numbers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get 17 Lectures On Fermat Numbers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

17 Lectures on Fermat Numbers


17 Lectures on Fermat Numbers

Author: Michal Krizek

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-14


DOWNLOAD





French mathematician Pierre de Fermat became most well known for his pioneering work in the area of number theory. His work with numbers has been attracting the attention of amateur and professional mathematicians for over 350 years. This book was written in honor of the 400th anniversary of his birth and is based on a series of lectures given by the authors. The purpose of this book is to provide readers with an overview of the many properties of Fermat numbers and to demonstrate their numerous appearances and applications in areas such as number theory, probability theory, geometry, and signal processing. This book introduces a general mathematical audience to basic mathematical ideas and algebraic methods connected with the Fermat numbers and will provide invaluable reading for the amateur and professional alike.

Mersenne Numbers And Fermat Numbers


Mersenne Numbers And Fermat Numbers

Author: Elena Deza

language: en

Publisher: World Scientific

Release Date: 2021-08-06


DOWNLOAD





This book contains a complete detailed description of two classes of special numbers closely related to classical problems of the Theory of Primes. There is also extensive discussions of applied issues related to Cryptography.In Mathematics, a Mersenne number (named after Marin Mersenne, who studied them in the early 17-th century) is a number of the form Mn = 2n - 1 for positive integer n.In Mathematics, a Fermat number (named after Pierre de Fermat who first studied them) is a positive integer of the form Fn = 2k+ 1, k=2n, where n is a non-negative integer.Mersenne and Fermat numbers have many other interesting properties. Long and rich history, many arithmetic connections (with perfect numbers, with construction of regular polygons etc.), numerous modern applications, long list of open problems allow us to provide a broad perspective of the Theory of these two classes of special numbers, that can be useful and interesting for both professionals and the general audience.

13 Lectures on Fermat's Last Theorem


13 Lectures on Fermat's Last Theorem

Author: Paulo Ribenboim

language: en

Publisher: Springer Science & Business Media

Release Date: 1979-12-18


DOWNLOAD





Fermat's problem, also ealled Fermat's last theorem, has attraeted the attention of mathematieians far more than three eenturies. Many clever methods have been devised to attaek the problem, and many beautiful theories have been ereated with the aim of proving the theorem. Yet, despite all the attempts, the question remains unanswered. The topie is presented in the form of leetures, where I survey the main lines of work on the problem. In the first two leetures, there is a very brief deseription of the early history , as well as a seleetion of a few of the more representative reeent results. In the leetures whieh follow, I examine in sue­ eession the main theories eonneeted with the problem. The last two lee tu res are about analogues to Fermat's theorem. Some of these leetures were aetually given, in a shorter version, at the Institut Henri Poineare, in Paris, as well as at Queen's University, in 1977. I endeavoured to produee a text, readable by mathematieians in general, and not only by speeialists in number theory. However, due to a limitation in size, I am aware that eertain points will appear sketehy. Another book on Fermat's theorem, now in preparation, will eontain a eonsiderable amount of the teehnieal developments omitted here. It will serve those who wish to learn these matters in depth and, I hope, it will clarify and eomplement the present volume.