Unconventional Computing


Download Unconventional Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Unconventional Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Unconventional Computing 2007


Unconventional Computing 2007

Author: Andrew Adamatzky

language: en

Publisher: Luniver Press

Release Date: 2007


DOWNLOAD





Unconventional computing is the quest for groundbreaking new algorithms and computing architectures based on and inspired by the principles of information processing in physical, chemical and biological systems. The timely scientific contributions in this book include cutting-edge theoretical work on quantum and kinematic Turing machines, computational complexity of physical systems, molecular and chemical computation, processing incomplete information, physical hypercomputation, automata networks and swarms. They are nicely complemented by recent results on experimental implementations of logical and arithmetical circuits in a domino substrate, DNA computers, and self-assembly. The book supports interdisciplinary research in the field of future computing and contributes toward developing a common interface between computer science, biology, mathematics, chemistry, electronics engineering, and physics.

Handbook Of Unconventional Computing (In 2 Volumes)


Handbook Of Unconventional Computing (In 2 Volumes)

Author: Andrew Adamatzky

language: en

Publisher: World Scientific

Release Date: 2021-08-18


DOWNLOAD





Did you know that computation can be implemented with cytoskeleton networks, chemical reactions, liquid marbles, plants, polymers and dozens of other living and inanimate substrates? Do you know what is reversible computing or a DNA microscopy? Are you aware that randomness aids computation? Would you like to make logical circuits from enzymatic reactions? Have you ever tried to implement digital logic with Minecraft? Do you know that eroding sandstones can compute too?This volume reviews most of the key attempts in coming up with an alternative way of computation. In doing so, the authors show that we do not need computers to compute and we do not need computation to infer. It invites readers to rethink the computer and computing, and appeals to computer scientists, mathematicians, physicists and philosophers. The topics are presented in a lively and easily accessible manner and make for ideal supplementary reading across a broad range of subjects.Related Link(s)

Advances in Unconventional Computing


Advances in Unconventional Computing

Author: Andrew Adamatzky

language: en

Publisher: Springer

Release Date: 2016-07-18


DOWNLOAD





The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete authoritative account, of the theoretical and experimental findings in the unconventional computing written by the world leaders in the field. All chapters are self-contains, no specialist background is required to appreciate ideas, findings, constructs and designs presented. This treatise in unconventional computing appeals to readers from all walks of life, from high-school pupils to university professors, from mathematicians, computers scientists and engineers to chemists and biologists.