Ultra Low Power Biomedical Signal Processing

Download Ultra Low Power Biomedical Signal Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultra Low Power Biomedical Signal Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ultra Low-Power Biomedical Signal Processing

Author: Sandro Augusto Pavlik Haddad
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-05-26
Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.
Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings.The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing.This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain.They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems.