Tomita S Lectures On Observable Algebras In Hilbert Space

Download Tomita S Lectures On Observable Algebras In Hilbert Space PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tomita S Lectures On Observable Algebras In Hilbert Space book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Tomita's Lectures on Observable Algebras in Hilbert Space

This book is devoted to the study of Tomita's observable algebras, their structure and applications. It begins by building the foundations of the theory of T*-algebras and CT*-algebras, presenting the major results and investigating the relationship between the operator and vector representations of a CT*-algebra. It is then shown via the representation theory of locally convex*-algebras that this theory includes Tomita–Takesaki theory as a special case; every observable algebra can be regarded as an operator algebra on a Pontryagin space with codimension 1. All of the results are proved in detail and the basic theory of operator algebras on Hilbert space is summarized in an appendix. The theory of CT*-algebras has connections with many other branches of functional analysis and with quantum mechanics. The aim of this book is to make Tomita’s theory available to a wider audience, with the hope that it will be used by operator algebraists and researchers in these related fields.
Generalized B*-Algebras and Applications

Author: Maria Fragoulopoulou
language: en
Publisher: Springer Nature
Release Date: 2022-06-09
This book reviews the theory of 'generalized B*-algebras' (GB*-algebras), a class of complete locally convex *-algebras which includes all C*-algebras and some of their extensions. A functional calculus and a spectral theory for GB*-algebras is presented, together with results such as Ogasawara's commutativity condition, Gelfand–Naimark type theorems, a Vidav–Palmer type theorem, an unbounded representation theory, and miscellaneous applications. Numerous contributions to the subject have been made since its initiation by G.R. Allan in 1967, including the notable early work of his student P.G. Dixon. Providing an exposition of existing research in the field, the book aims to make this growing theory as familiar as possible to postgraduate students interested in functional analysis, (unbounded) operator theory and its relationship to mathematical physics. It also addresses researchers interested in extensions of the celebrated theory of C*-algebras.