Three Problems In Interacting Particle Systems

Download Three Problems In Interacting Particle Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Three Problems In Interacting Particle Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Interacting Particle Systems

Author: T.M. Liggett
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
At what point in the development of a new field should a book be written about it? This question is seldom easy to answer. In the case of interacting particle systems, important progress continues to be made at a substantial pace. A number of problems which are nearly as old as the subject itself remain open, and new problem areas continue to arise and develop. Thus one might argue that the time is not yet ripe for a book on this subject. On the other hand, this field is now about fifteen years old. Many important of several basic models is problems have been solved and the analysis almost complete. The papers written on this subject number in the hundreds. It has become increasingly difficult for newcomers to master the proliferating literature, and for workers in allied areas to make effective use of it. Thus I have concluded that this is an appropriate time to pause and take stock of the progress made to date. It is my hope that this book will not only provide a useful account of much of this progress, but that it will also help stimulate the future vigorous development of this field.
Scaling Limits of Interacting Particle Systems

Author: Claude Kipnis
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
The idea of writing up a book on the hydrodynamic behavior of interacting particle systems was born after a series of lectures Claude Kipnis gave at the University of Paris 7 in the spring of 1988. At this time Claude wrote some notes in French that covered Chapters 1 and 4, parts of Chapters 2, 5 and Appendix 1 of this book. His intention was to prepare a text that was as self-contained as possible. lt would include, for instance, all tools from Markov process theory ( cf. Appendix 1, Chaps. 2 and 4) necessary to enable mathematicians and mathematical physicists with some knowledge of probability, at the Ievel of Chung (1974), to understand the techniques of the theory of hydrodynamic Iimits of interacting particle systems. In the fall of 1991 Claude invited me to complete his notes with him and transform them into a book that would present to a large audience the latest developments of the theory in a simple and accessible form. To concentrate on the main ideas and to avoid unnecessary technical difficulties, we decided to consider systems evolving in finite lattice spaces and for which the equilibrium states are product measures. To illustrate the techniques we chose two well-known particle systems, the generalized exclusion processes and the zero-range processes. We also conceived the book in such a manner that most chapters can be read independently of the others. Here are some comments that might help readers find their way.
Quantum Interacting Particle Systems

The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.