Three Dimensional Link Theory And Invariants Of Plane Curve Singularities Am 110 Volume 110

Download Three Dimensional Link Theory And Invariants Of Plane Curve Singularities Am 110 Volume 110 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Three Dimensional Link Theory And Invariants Of Plane Curve Singularities Am 110 Volume 110 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Symplectic Geometry

Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
Geometry and Topology Down Under

Author: Craig D. Hodgson
language: en
Publisher: American Mathematical Soc.
Release Date: 2013-08-23
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.
Complex Geometry and Lie Theory

Author: James A. Carlson
language: en
Publisher: American Mathematical Soc.
Release Date: 1991
In the late 1960s and early 1970s, Phillip Griffiths and his collaborators undertook a study of period mappings and variation of Hodge structure. The motivating problems, which centered on the understanding of algebraic varieties and the algebraic cycles on them, came from algebraic geometry. However, the techiques used were transcendental in nature, drawing heavily on both Lie theory and hermitian differential geometry. Promising approaches were formulated to fundamental questions in the theory of algebraic curves, moduli theory, and the deep interaction between Hodge theory and algebraic cyles. Rapid progress on many fronts was made in the 1970s and 1980s, including the discovery of important connections to other fields, including Nevanlinna theory, integrable systems, rational homotopy theory, harmonic mappings, intersection cohomology, and superstring theory. This volume contains thirteen papers presented during the Symposium on Complex Geometry and Lie Theory held in Sundance, Utah in May 1989. The symposium was designed to review twenty years of interaction between these two fields, concentrating on their links with Hodge theory. The organizers felt that the time was right to examine once again the large issues of understanding the moduli and cycle theory of higher-dimensional varieties, which was the starting point of these developments. The breadth of this collection of papers indicates the continuing growth and vitality of this area of research. Several survey papers are included, which should make the book a valuable resource for graduate students and other researchers who wish to learn about the field. With contributions from some of the field's top researchers, this volume testifies to the breadth and vitality of this area of research.