Thinking In The Language Of Mathematics

Download Thinking In The Language Of Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Thinking In The Language Of Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Mathematical Thinking

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Mathematical Thinking and Communication

Author: Mark Driscoll
language: en
Publisher: Heinemann Educational Books
Release Date: 2016
Language is deeply involved in learning mathematics as students both communicate and think about mathematical ideas. Because of this, teachers of English learners have particular challenges to overcome. Mathematical Thinking and Communication addresses perhaps the most significant challenge: providing access to mathematics for these students. For all students-and English learners in particular-access means finding effective, authentic ways to make language clear and thinking visible so they can reason more, speak more, and write more in mathematics. Based on extensive research and collaboration with teachers, coaches, and schools, Mark Driscoll, Johannah Nikula, and Jill Neumayer DePiper outline four principles for designing instruction that creates this kind of access: challenging tasks, multimodal representations, development of mathematical communication, and repeated structured practice. Starting from the perspective that English learners are capable of mathematical thinking (even as they are learning to express their ideas verbally), the authors highlight techniques for using gestures, drawings, models, manipulatives, and technology as tools for reasoning and communication. By embedding these visual representations into instruction-and encouraging their regular use-teachers support engagement in problem solving, facilitate mathematical dialogue, and notice evidence of students' thinking that propels them to create more engaging and equitable instruction. Enhanced by an extensive online collection of companion professional development resources, this book highlights classroom-ready strategies and routines for fostering mathematics success in all students and helping them recognize their potential.
How Not to Be Wrong

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.