Theory Applications Of Image Analysis

Download Theory Applications Of Image Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Applications Of Image Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Moment Functions In Image Analysis - Theory And Applications

This book is a comprehensive treatise on the theory and applications of moment functions in image analysis. Moment functions are widely used in various realms of computer vision and image processing. Numerous algorithms and techniques have been developed using image moments, in the areas of pattern recognition, object identification, three-dimensional object pose estimation, robot sensing, image coding and reconstruction. This book provides a compilation of the theoretical aspects related to different types of moment functions, and their applications in the above areas.The book is organized into two parts. The first part discusses the fundamental concepts behind important moments such as geometric moments, complex moments, Legendre moments, Zernike moments, and moment tensors. Most of the commonly used properties of moment functions and the mathematical framework for the derivation of basic theorems and results are discussed in detail. This includes the derivation of moment invariants, implementation aspects of moments, transform properties, and fast methods for computing the moment functions for both binary and gray-level images. The second part presents the key application areas of moments such as pattern recognition, object identification, image-based pose estimation, edge detection, clustering, segmentation, coding and reconstruction. Important algorithms in each of these areas are discussed. A comprehensive list of bibliographical references on image moments is also included.
Image Processing and Analysis with Graphs

Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Mathematical Morphology and Its Applications to Image Processing

Author: Jean Serra
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.