The Reductive Subgroups Of F 4

Download The Reductive Subgroups Of F 4 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Reductive Subgroups Of F 4 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Reductive Subgroups of $F_4$

Author: David I. Stewart
language: en
Publisher: American Mathematical Soc.
Release Date: 2013-04-22
Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of characteristic $p\geq 0$. A subgroup $X$ of $G$ is said to be $G$-completely reducible if, whenever it is contained in a parabolic subgroup of $G$, it is contained in a Levi subgroup of that parabolic. A subgroup $X$ of $G$ is said to be $G$-irreducible if $X$ is in no proper parabolic subgroup of $G$; and $G$-reducible if it is in some proper parabolic of $G$. In this paper, the author considers the case that $G=F_4(K)$. The author finds all conjugacy classes of closed, connected, semisimple $G$-reducible subgroups $X$ of $G$. Thus he also finds all non-$G$-completely reducible closed, connected, semisimple subgroups of $G$. When $X$ is closed, connected and simple of rank at least two, he finds all conjugacy classes of $G$-irreducible subgroups $X$ of $G$. Together with the work of Amende classifying irreducible subgroups of type $A_1$ this gives a complete classification of the simple subgroups of $G$. The author also uses this classification to find all subgroups of $G=F_4$ which are generated by short root elements of $G$, by utilising and extending the results of Liebeck and Seitz.
The Reductive Subgroups of F4

Let G=G(K) be a simple algebraic group defined over an algebraically closed field K of characteristic p ≥ 0. A subgroup X of G is said to be G-completely reducible if, whenever it is contained in a parabolic subgroup of G, it is contained in a Levi subgroup of that parabolic. A subgroup X of G is said to be G-irreducible if X is in no proper parabolic subgroup of G; and G-reducible if it is in some proper parabolic of G. In this paper, we consider the case that G = F4(K). We find all conjugacy classes of closed, connected, semisimple G-reducible subgroups X of G. Thus we also find all non-G-completely reducible closed, connected, semisimple subgroups of G. When X is closed, connected and simple of rank at least two, we find all conjugacy classes of G-irreducible subgroups X of G. Together with the work of Amende classifying irreducible subgroups of type A1 this gives a complete classification of the simple subgroups of G. Amongst the classification of subgroups G=F4(K) we find infinite varieties of subgroups X of G which are maximal amongst all reductive subgroups of G but not maximal subgroups of G; thus they are not contained in any reductive maximal subgroup of G. The connected, semisimple subgroups contained in no maximal reductive subgroup of G are of type A1 when p=3 and of type A21 or A1 when p = 2. Some of those which occur when p=2 act indecomposably on the 26-dimensional irreducible representation of G. We also use this classification to find all subgroups of G=F4 which are generated by short root elements of G, by utilising and extending the results of Leibeck and Seitz.
The Irreducible Subgroups of Exceptional Algebraic Groups

Author: Adam R. Thomas
language: en
Publisher: American Mathematical Soc.
Release Date: 2021-06-18
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.