The Application Of Model Based Predictive Control And Multivariate Statistical Process Control In Industry

Download The Application Of Model Based Predictive Control And Multivariate Statistical Process Control In Industry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Application Of Model Based Predictive Control And Multivariate Statistical Process Control In Industry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Monitoring of Complex Multivatiate Processes

The development and application of multivariate statisticaltechniques in process monitoring has gained substantial interestover the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complexsystems, such techniques have been refined and applied in variousengineering areas, for example mechanical and manufacturing,chemical, electrical and electronic, and power engineering. The recipe for the tremendous interest in multivariate statisticaltechniques lies in its simplicity and adaptability for developingmonitoring applications. In contrast, competitive model,signal or knowledge based techniques showed their potential onlywhenever cost-benefit economics have justified the required effortin developing applications. Statistical Monitoring of Complex Multivariate Processespresents recent advances in statistics based process monitoring,explaining how these processes can now be used in areas such asmechanical and manufacturing engineering for example, in additionto the traditional chemical industry. This book: Contains a detailed theoretical background of the componenttechnology. Brings together a large body of work to address thefield’s drawbacks, and develops methods for theirimprovement. Details cross-disciplinary utilization, exemplified by examplesin chemical, mechanical and manufacturing engineering. Presents real life industrial applications, outliningdeficiencies in the methodology and how to address them. Includes numerous examples, tutorial questions and homeworkassignments in the form of individual and team-based projects, toenhance the learning experience. Features a supplementary website including Matlab algorithmsand data sets. This book provides a timely reference text to the rapidlyevolving area of multivariate statistical analysis for academics,advanced level students, and practitioners alike.
Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing

Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing Detailed resource on the “Why,” “What,” and “How” of integrated process modeling, advanced control and data analytics explained via hands-on examples and workshops for optimizing polyolefin manufacturing. Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing discusses, as well as demonstrates, the optimization of polyolefin production by covering topics from polymer process modeling and advanced process control to data analytics and machine learning, and sustainable design and industrial practice. The text also covers practical problems, handling of real data streams, developing the right level of detail, and tuning models to the available data, among other topics, to allow for easy translation of concepts into practice. Written by two highly qualified authors, Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing includes information on: Segment-based modeling of polymer processes; selection of thermodynamic methods; estimation of physical properties for polymer process modeling Reactor modeling, convergence tips and data-fit tool; free radical polymerization (LDPE, EVA and PS), Ziegler-Natta polymerization (HDPE, PP, LLPDE, and EPDM) and ionic polymerization (SBS rubber) Improved polymer process operability and control through steady-state and dynamic simulation models Model-predictive control of polyolefin processes and applications of multivariate statistics and machine learning to optimizing polyolefin manufacturing Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing enables readers to make full use of advanced computer models and latest data analytics and machine learning tools for optimizing polyolefin manufacturing, making it an essential resource for undergraduate and graduate students, researchers, and new and experienced engineers involved in the polyolefin industry.