Tensor Calculus Pdf

Download Tensor Calculus Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tensor Calculus Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Tensor Calculus Made Simple

This book is about tensor calculus. The language and method used in presenting the ideas and techniques of tensor calculus make it very suitable for learning this subject by the beginners who have not been exposed previously to this elegant branch of mathematics. Considerable efforts have been made to reduce the dependency on foreign texts by summarizing the main concepts needed to make the book self-contained. The book also contains a significant number of high-quality graphic illustrations to aid the readers and students in their effort to visualize the ideas and understand the abstract concepts. Furthermore, illustrative techniques, such as coloring and highlighting key terms by boldface fonts, have been employed. The book also contains extensive sets of exercises which cover most of the given materials. These exercises are designed to provide thorough revisions of the supplied materials. The solutions of all these exercises are provided in a companion book. The book is also furnished with a rather detailed index and populated with hyperlinks, for the ebook users, to facilitate referencing and connecting related subjects and ideas.
Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Author: Pavel Grinfeld
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-09-24
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Tensor Spaces and Numerical Tensor Calculus

Author: Wolfgang Hackbusch
language: en
Publisher: Springer Nature
Release Date: 2019-12-16
Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.