Similarity Based Clustering

Download Similarity Based Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Similarity Based Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Similarity-Based Clustering

Author: Thomas Villmann
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-06-02
This book is the outcome of the Dagstuhl Seminar on "Similarity-Based Clustering" held at Dagstuhl Castle, Germany, in Spring 2007. In three chapters, the three fundamental aspects of a theoretical background, the representation of data and their connection to algorithms, and particular challenging applications are considered. Topics discussed concern a theoretical investigation and foundation of prototype based learning algorithms, the development and extension of models to directions such as general data structures and the application for the domain of medicine and biology. Similarity based methods find widespread applications in diverse application domains, including biomedical problems, but also in remote sensing, geoscience or other technical domains. The presentations give a good overview about important research results in similarity-based learning, whereby the character of overview articles with references to correlated research articles makes the contributions particularly suited for a first reading concerning these topics.
Computational Genomics with R

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Grouping Multidimensional Data

Author: Jacob Kogan
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-02-08
Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.