Real Time Hyperspectral Image Processing

Download Real Time Hyperspectral Image Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Hyperspectral Image Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advances in Hyperspectral Image Processing Techniques

Advances in Hyperspectral Image Processing Techniques Authoritative and comprehensive resource covering recent hyperspectral imaging techniques from theory to applications Advances in Hyperspectral Image Processing Techniques is derived from recent developments of hyperspectral imaging (HSI) techniques along with new applications in the field, covering many new ideas that have been explored and have led to various new directions in the past few years. The work gathers an array of disparate research into one resource and explores its numerous applications across a wide variety of disciplinary areas. In particular, it includes an introductory chapter on fundamentals of HSI and a chapter on extensive use of HSI techniques in satellite on-orbit and on-board processing to aid readers involved in these specific fields. The book’s content is based on the expertise of invited scholars and is categorized into six parts. Part I provides general theory. Part II presents various Band Selection techniques for Hyperspectral Images. Part III reviews recent developments on Compressive Sensing for Hyperspectral Imaging. Part IV includes Fusion of Hyperspectral Images. Part V covers Hyperspectral Data Unmixing. Part VI offers different views on Hyperspectral Image Classification. Specific sample topics covered in Advances in Hyperspectral Image Processing Techniques include: Two fundamental principles of hyperspectral imaging Constrained band selection for hyperspectral imaging and class information-based band selection for hyperspectral image classification Restricted entropy and spectrum properties for hyperspectral imaging and endmember finding in compressively sensed band domain Hyperspectral and LIDAR data fusion, fusion of band selection methods for hyperspectral imaging, and fusion using multi-dimensional information Advances in spectral unmixing of hyperspectral data and fully constrained least squares linear spectral mixture analysis Sparse representation-based hyperspectral image classification; collaborative hyperspectral image classification; class-feature weighted hyperspectral image classification; target detection approach to hyperspectral image classification With many applications beyond traditional remote sensing, ranging from defense and intelligence, to agriculture, to forestry, to environmental monitoring, to food safety and inspection, to medical imaging, Advances in Hyperspectral Image Processing Techniques is an essential resource on the topic for industry professionals, researchers, academics, and graduate students working in the field.
Hyperspectral Image Analysis

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Real-Time Progressive Hyperspectral Image Processing

The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive HyperSpectral Imaging (PHSI) and Recursive HyperSpectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book.