Quantitative Feedback Theory And Sliding Mode Control

Download Quantitative Feedback Theory And Sliding Mode Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantitative Feedback Theory And Sliding Mode Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantitative Feedback Theory

The first edition of Quantitative Feedback Theory gained enormous popularity by successfully bridging the gap between theory and real-world engineering practice. Avoiding mathematical theorems, lemmas, proofs, and correlaries, it boiled down to the essential elements of quantitative feedback theory (QFT) necessary to readily analyze, develop, and implement robust control systems. Thoroughly updated and expanded, Quantitative Feedback Theory: Fundamentals and Applications, Second Edition continues to provide a platform for intelligent decision making and design based on knowledge of the characteristics and operating scenario of the plant. Beginning with the fundamentals, the authors build a background in analog and discrete-time multiple-input-single-output (MISO) and multiple-input-multiple-output (MIMO) feedback control systems along with the fundamentals of the QFT technique. The remainder of the book links these concepts to practical applications. Among the many enhancements to this edition are a new section on large wind turbine control system, four new chapters, and five new appendices. The new chapters cover non-diagonal compensator design for MIMO systems, QFT design involving Smith predictors for time delay systems with uncertainty, weighting matrices and control authority, and QFT design techniques applied to real-world industrial systems. Quantitative Feedback Theory: Fundamentals and Applications, Second Edition includes new and revised examples and end-of-chapter problems and offers a companion CD that supplies MIMO QFT computer-aided design (CAD) software. It is the perfect guide to effectively and intuitively implementing QFT control.
Recent Advances in Robust Control

Author: Andreas Müller
language: en
Publisher: BoD – Books on Demand
Release Date: 2011-11-07
Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics.
Sliding Mode Control in Electro-Mechanical Systems

Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.