Parallel Python Programming


Download Parallel Python Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Python Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Parallel Programming with Python


Parallel Programming with Python

Author: Jan Palach

language: en

Publisher: CreateSpace

Release Date: 2014-12-12


DOWNLOAD





Develop efficient parallel systems using the robust Python environment Overview Demonstrates the concepts of Python parallel programming Boosts your Python computing capabilities Contains easy-to-understand explanations and plenty of examples In Detail Starting with the basics of parallel programming, you will proceed to learn about how to build parallel algorithms and their implementation. You will then gain the expertise to evaluate problem domains, identify if a particular problem can be parallelized, and how to use the Threading and Multiprocessor modules in Python. The Python Parallel (PP) module, which is another mechanism for parallel programming, is covered in depth to help you optimize the usage of PP. You will also delve into using Celery to perform distributed tasks efficiently and easily. Furthermore, you will learn about asynchronous I/O using the asyncio module. Finally, by the end of this book you will acquire an in-depth understanding about what the Python language has to offer in terms of built-in and external modules for an effective implementation of Parallel Programming. This is a definitive guide that will teach you everything you need to know to develop and maintain high-performance parallel computing systems using the feature-rich Python. What you will learn from this book Explore techniques to parallelize problems Integrate the Parallel Python module to implement Python code Execute parallel solutions on simple problems Achieve communication between processes using Pipe and Queue Use Celery Distributed Task Queue Implement asynchronous I/O using the Python asyncio module Create thread-safe structures Approach A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. Who this book is written for If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.

Parallel and High Performance Programming with Python: Unlock Parallel and Concurrent Programming in Python using Multithreading, CUDA, Pytorch, and Dask


Parallel and High Performance Programming with Python: Unlock Parallel and Concurrent Programming in Python using Multithreading, CUDA, Pytorch, and Dask

Author: Fabio Nelli

language: en

Publisher: Orange Education Pvt Limited

Release Date: 2023-04-12


DOWNLOAD





Unleash the capabilities of Python and its libraries for solving high performance computational problems. Key Features ● Explores parallel programming concepts and techniques for high-performance computing. ● Covers parallel algorithms, multiprocessing, distributed computing, and GPU programming. ● Provides practical use of popular Python libraries/tools like NumPy, Pandas, Dask, and TensorFlow. Book Description This book will teach you everything about the powerful techniques and applications of parallel computing, from the basics of parallel programming to the cutting-edge innovations shaping the future of computing. The book starts with an introduction to parallel programming and the different types of parallelism, including parallel programming with threads and processes. The book then delves into asynchronous programming, distributed Python, and GPU programming with Python, providing you with the tools you need to optimize your programs for distributed and high-performance computing. The book also covers a wide range of applications for parallel computing, including data science, artificial intelligence, and other complex scientific simulations. You will learn about the challenges and opportunities presented by parallel computing for these applications and how to overcome them. By the end of the book, you will have insights into the future of parallel computing, the latest research and developments in the field, and explore the exciting possibilities that lie ahead. What you will learn ● Build faster, smarter, and more efficient applications for data analysis, machine learning, and scientific computing ● Implement parallel algorithms in Python ● Best practices for designing, implementing, and scaling parallel programs in Python Who is this book for? This book is aimed at software developers who wish to take their careers to the next level by improving their skills and learning about concurrent and parallel programming. It is also intended for Python developers who aspire to write fast and efficient programs, and for students who wish to learn the fundamentals of parallel computing and its practical uses. Table of Contents 1. Introduction to Parallel Programming 2. Building Multithreaded Programs 3. Working with Multiprocessing and mpi4py Library 4. Asynchronous Programming with AsyncIO 5. Realizing Parallelism with Distributed Systems 6. Maximizing Performance with GPU Programming using CUDA 7. Embracing the Parallel Computing Revolution 8. Scaling Your Data Science Applications with Dask 9. Exploring the Potential of AI with Parallel Computing 10. Hands-on Applications of Parallel Computing

Parallel Programming with Python


Parallel Programming with Python

Author: Jan Palach

language: en

Publisher: Packt Publishing Ltd

Release Date: 2014-06-25


DOWNLOAD





A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.