Openfoam R

Download Openfoam R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Openfoam R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Meniscus Stability in Rotating Systems

The knowledge of behavior of liquids with free surfaces to their surrounding gaseous phase in compensated gravity is essential to the development of tank systems for spacecrafts. In microgravity, the liquid behavior is dominated by capillary forces, which are used to position and redistribute liquid propellant in a desired way for the mission. The body forces occurring due to residual accelerations, which can be caused by spin during the ballistic flight phases, force the liquid to reorient towards a new equilibrium state of the free surface. Due to spin the liquid is driven away from the tank outlet and located along tank walls in partially filled tanks. To assure enough liquid fuel over the tank outlet, so-called Propellant Management Devices (PMD’s), are employed. A PMD is a static, usually metal structure, which either provides a passage way for a liquid in microgravity or stores a certain amount of liquid at a desired location. Some PMD’s are designed to be refillable in periods of microgravity due to openings in the outer housing or by a housing composed of perforated metallic sheets. These reservoirs are refilled in periods of compensated gravity in order to provide the required amount of liquid fuel for attitude control or other maneuverings. Relatively large disturbances, such as lateral accelerations and spin, can drive the liquid fuel out of the reservoir, resulting in malfunction of the device. During spilling, gas enters the device such that only a residual amount of liquid propellant can be kept in the reservoir. Moreover, the connection to the bulk liquid in the tank may be interrupted such that refilling of the reservoir is disrupted. Hence, a PMD with two parallel disks forming the inlet and a venting tube at the topmost point of the outer housing shall be designed such that its refillable structure is only filled with liquid without any gas or vapor being easily trapped during operations.
Recent Advances in Theoretical, Applied, Computational and Experimental Mechanics

This volume contains selected papers presented at the 7th International Conference on Theoretical, Applied, Computational and Experimental Mechanics. The papers come from diverse disciplines, such as aerospace, civil, mechanical, and reliability engineering, physics, and navel architecture. The contents of this volume focus on different aspects of mechanics, namely, fluid mechanics, solid mechanics, flight mechanics, control, and propulsion. This volume will be of use to researchers interested in the study of mechanics across disciplines.
Advances in Experimental and Computational Rheology, Volume II

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.