Models And Modeling


Download Models And Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models And Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Modeling Languages in Mathematical Optimization


Modeling Languages in Mathematical Optimization

Author: Josef Kallrath

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-02-29


DOWNLOAD





This volume presents a unique combination of modeling and solving real world optimization problems. It is the only book which treats systematically the major modeling languages and systems used to solve mathematical optimization problems, and it also provides a useful overview and orientation of today's modeling languages in mathematical optimization. It demonstrates the strengths and characteristic features of such languages and provides a bridge for researchers, practitioners and students into a new world: solving real optimization problems with the most advances modeling systems.

Mathematical Modeling


Mathematical Modeling

Author: Sandip Banerjee

language: en

Publisher: CRC Press

Release Date: 2014-02-07


DOWNLOAD





Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differe

R for Data Science


R for Data Science

Author: Hadley Wickham

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-12-12


DOWNLOAD





Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results