Measurement Error In Survey Data

Download Measurement Error In Survey Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Measurement Error In Survey Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Measurement Errors in Surveys

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book will be an aid to survey statisticians and to research workers who must work with survey data." –Short Book Reviews, International Statistical Institute Measurement Errors in Surveys documents the current state of the field, reports new research findings, and promotes interdisciplinary exchanges in modeling, assessing, and reducing measurement errors in surveys. Providing a fundamental approach to measurement errors, the book features sections on the questionnaire, respondents and responses, interviewers and other means of data collection, the respondent-interviewer relationship, and the effects of measurement errors on estimation and data analysis.
Measurement Error in Longitudinal Data

Author: Alexandru Cernat
language: en
Publisher: Oxford University Press
Release Date: 2021-03-18
Longitudinal data is essential for understanding how the world around us changes. Most theories in the social sciences and elsewhere have a focus on change, be it of individuals, of countries, of organizations, or of systems, and this is reflected in the myriad of longitudinal data that are being collected using large panel surveys. This type of data collection has been made easier in the age of Big Data and with the rise of social media. Yet our measurements of the world are often imperfect, and longitudinal data is vulnerable to measurement errors which can lead to flawed and misleading conclusions. Measurement Error in Longitudinal Data tackles the important issue of how to investigate change in the context of imperfect data. It compiles the latest advances in estimating change in the presence of measurement error from several fields and covers the entire process, from the best ways of collecting longitudinal data, to statistical models to estimate change under uncertainty, to examples of researchers applying these methods in the real world. This book introduces the essential issues of longitudinal data collection, such as memory effects, panel conditioning (or mere measurement effects), the use of administrative data, and the collection of multi-mode longitudinal data. It also presents some of the most important models used in this area, including quasi-simplex models, latent growth models, latent Markov chains, and equivalence/DIF testing. Finally, the use of vignettes in the context of longitudinal data and estimation methods for multilevel models of change in the presence of measurement error are also discussed.
Patterns and impact of longitudinal measurement error for welfare receipt

Author: Johannes Eggs
language: en
Publisher: wbv Media GmbH & Company KG
Release Date: 2016-11-30
Diese Arbeit beschäftigt sich mit Messfehlern in Längsschnittdaten. Messfehler können in besonderem Maße die Messung von Übergängen und Veränderungen über die Zeit beeinflussen. Die Messung von Veränderungen ist jedoch einer der Hauptgründe für das Erheben von Längsschnittdaten. Allerdings werden Messfehler in Längsschnittdaten selten analysiert. Durch die Verknüpfung von Paneldaten mit Registerdaten auf der individuellen Ebene werden in dieser Arbeit Messfehler für den Bezug von Arbeitslosengeld II für fünf aufeinanderfolgende Panelwellen untersucht. Dabei zeigt sich, dass die Messfehler für den Bezug nicht zufällig verteilt sind, sondern mit der Zeit und persönlichen Charakteristiken korrelieren.