Logic Reference Book For Computer Scientists

Download Logic Reference Book For Computer Scientists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logic Reference Book For Computer Scientists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Essential Logic for Computer Science

An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
Logic for Computer Scientists

Author: Uwe Schöning
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-01-11
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
Mathematical Logic for Computer Science

Author: Mordechai Ben-Ari
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. To provide a balanced treatment of logic, tableaux are related to deductive proof systems. The logical systems presented are: - Propositional calculus (including binary decision diagrams); - Predicate calculus; - Resolution; - Hoare logic; - Z; - Temporal logic. Answers to exercises (for instructors only) as well as Prolog source code for algorithms may be found via the Springer London web site: http://www.springer.com/978-1-85233-319-5 Mordechai Ben-Ari is an associate professor in the Department of Science Teaching of the Weizmann Institute of Science. He is the author of numerous textbooks on concurrency,programming languages and logic, and has developed software tools for teaching concurrency. In 2004, Ben-Ari received the ACM/SIGCSE Award for Outstanding Contributions to Computer Science Education.