Localisation D Un Robot Mobile Par Fusion De Donnees Multi Sensorielles Dans Un Environnement Structure

Download Localisation D Un Robot Mobile Par Fusion De Donnees Multi Sensorielles Dans Un Environnement Structure PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Localisation D Un Robot Mobile Par Fusion De Donnees Multi Sensorielles Dans Un Environnement Structure book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Localisation d'un robot mobile par fusion de données multi sensorielles dans un environnement structure

Dans cette thèse une méthode de fusion de données multi sensorielles pour localiser un robot mobile est proposée. L'algorithme met en ouvre un filtre de kalman afin de combiner la localisation relative avec un recalage absolu qui est effectue par rapport a des repères de l'environnement du véhicule. Ces repères sont des balises artificielles ponctuelles ou des éléments caractéristiques de l'environnement: coins, segments de droite l'algorithme permet une localisation du robot par rapport a des repères dont la position n'est que plus ou moins bien connue. Des contraintes, dues a la préparation d'un milieu balise (détermination de la position des repères), peuvent ainsi être levées. Un recalage des balises plus ou moins bien connue est de plus propose et il met également en ouvre un filtre de kalman. Une analyse détaillée de l'algorithme ainsi qu'une étude de ses performances par simulations statistiques sont présentées. Cette analyse nous a permis d'introduire une méthode pour sélectionner les balises qui apportent le plus d'information. Des essais ont été effectues sur une plate-forme expérimentale qui est équipée d'un tellement laser panoramique. Quelques résultats qui permettent de valider la méthode de localisation sont présentes
COOPERATION MULTI-CAPTEURS APPLIQUEE A LA LOCALISATION DES ROBOTS MOBILES

LES TRAVAUX PRESENTES DANS CE MEMOIRE TRAITE DE LA LOCALISATION D'UN ROBOT MOBILE DANS UN ENVIRONNEMENT INTERIEUR NON BALISE. TROIS TYPES DE CAPTEURS SONT UTILISES POUR DETERMINER LA POSITION DU ROBOT : UN ODOMETRE, UN SYSTEME DE VISION OMNIDIRECTIONNELLE ET UN SYSTEME TELEMETRIQUE ROTATIF. L'OBJECTIF DE CETTE ETUDE EST DE PERMETTRE A UN ROBOT DE SE DEPLACER EN TOUTE SECURITE D'UNE CONFIGURATION INITIALE A UNE CONFIGURATION FINALE DANS UN ENVIRONNEMENT PARTIELLEMENT CONNU. POUR CELA DEUX APPROCHES ONT ETE UTILISEES : LA FUSION DES DONNEES PROPRIOCEPTIVES ET EXTEROCEPTIVES ET LA COOPERATION ENTRE LES CAPTEURS EXTEROCEPTIFS. DANS UN PREMIER TEMPS UNE METHODE DE LOCALISATION BASEE SUR LA FUSION DES DONNEES ODOMETRIQUES ET DES DONNEES TELEMETRIQUES A ETE DEVELOPPEE ET TESTEE. L'ESTIMATION DE LA POSITION ET DE SON INCERTITUDE ASSOCIEE EST OBTENUE PAR FILTRAGE DE KALMAN. LES AMERS UTILISES POUR CETTE APPROCHE SONT LES PAROIS DU MILIEU D'EVOLUTION. DANS UN DEUXIEME TEMPS UNE METHODE DE LOCALISATION UTILISANT LA VISION OMNIDIRECTIONNELLE ET L'ODOMETRIE A ETE ELABOREE. LES ANGLES D'AZIMUT DES DIFFERENTS AMERS VERTICAUX DE L'ENVIRONNEMENT SONT EXTRAITS DU MODELE SENSORIEL POUR CALCULER LA CONFIGURATION DU ROBOT. CONTRAIREMENT A L'APPROCHE ADOPTEE PRECEDEMMENT POUR LA FUSION DES DONNEES, LE FILTRAGE DE KALMAN ETENDU EST DANS CE CAS EMPLOYE, A CAUSE DE LA NON LINEARITE DES EQUATIONS D'OBSERVATION. FINALEMENT, DANS UN TROISIEME TEMPS, UNE STRATEGIE VISANT A FAIRE COOPERER DEUX CAPTEURS EXTEROCEPTIFS, UN TELEMETRE LASER ROTATIF ET LE SYSTEME DE VISION OMNIDIRECTIONNELLE, A ETE MISE EN OEUVRE. CETTE METHODE PERMET D'OBTENIR UNE ESTIMATION ABSOLUE DE LA CONFIGURATION DU ROBOT QUI EST D'UNE PART PRECISE ET D'AUTRE PART ROBUSTE. EN OUTRE, UN ALGORITHME PERMETTANT DE METTRE A JOUR LA CARTE DE L'ENVIRONNEMENT DU ROBOT AU COURS DE SON DEPLACEMENT A ETE ELABOREE ET TESTE. CE MODULE D'INSERTION DE BALISES NATURELLES NON REPERTORIEES, PERMET AINSI AU ROBOT DE SE LOCALISER DANS DES ZONES DE L'ENVIRONNEMENT QUI NE SONT QUE PARTIELLEMENT CONNUES. CE SYSTEME DE LOCALISATION, BASE SUR UNE APPROCHE COOPERATIVE, PERMET A UN ROBOT DE MENER A BIEN DES MISSIONS DANS UN ENVIRONNEMENT INTERIEUR NON BALISE QUI N'EST QUE PARTIELLEMENT CONNU.
Architecture générique de fusion par approche Top-Down

La problématique qui va être abordée dans cette thèse est la localisation d'un robot mobile. Ce dernier, équipé de capteurs bas-coût, cherche à exploiter le maximum d'informations possibles pour répondre à un objectif fixé au préalable. Un problème de fusion de données sera traité d'une manière à ce qu'à chaque situation, le robot saura quelle information utiliser pour se localiser d'une manière continue. Les données que nous allons traiter seront de différents types. Dans nos travaux, deux propriétés de localisation sont désirées: la précision et la confiance. Pour pouvoir le contrôler, le robot doit connaître sa position d'une manière précise et intègre. En effet, la précision désigne le degré d'incertitude métrique lié à la position estimée. Elle est retournée par un filtre de fusion. Si en plus, le degré de certitude d'être dans cette zone d'incertitude est grand, la confiance dans l'estimation sera élevée et cette estimation sera donc considérée comme intègre. Ces deux propriétés sont généralement liées. C'est pourquoi, elles sont souvent représentées ensemble pour caractériser l'estimation retournée de la pose du robot. Dans ce travail nous rechercherons à optimiser simultanément ces deux propriétés.Pour tirer profit des différentes techniques existantes pour une estimation optimale de la pose du robot,nous proposons une approche descendante basée sur l'exploitation d'une carte environnementale définie dans un référentiel absolu. Cette approche utilise une sélection a priori des meilleures mesures informatives parmi toutes les sources de mesure possibles. La sélection se fait selon un objectif donné (de précision et de confiance), l'état actuel du robot et l'apport informationnel des données.Comme les données sont bruitées, imprécises et peuvent également être ambiguës et peu fiables, la prise en compte de ces limites est nécessaire afin de fournir une évaluation de la pose du robot aussi précise et fiable que possible. Pour cela, une focalisation spatiale et un réseau bayésien sont utilisés pour réduire les risques de mauvaises détections. Si malgré tout de mauvaises détections subsistent, elles seront gérées par un processus de retour qui réagit de manière efficace en fonction des objectifs souhaités.Les principales contributions de ce travail sont d'une part la conception d'une architecture de localisation multi-sensorielle générique et modulaire de haut niveau avec un mode opératoire descendant. Nous avons utilisé la notion de triplet perceptif qui représente un ensemble amer, capteur, détecteur pour désigner chaque module perceptif. À chaque instant, une étape de prédiction et une autre de mise à jour sont exécutées. Pour l'étape de mise à jour, le système sélectionne le triplet le plus pertinent (d'un point de vue précision et confiance) selon un critère informationnel. L'objectif étant d'assurer une localisation intègre et précise, notre algorithme a été écrit de manière à ce que l'on puisse gérer les aspects ambiguïtés.D'autre part, l'algorithme développé permet de localiser un robot dans une carte de l'environnement. Pour cela, une prise en compte des possibilités de mauvaises détections suite aux phénomènes d'ambiguïté a été considérée par le moyen d'un processus de retour en arrière. En effet, ce dernier permet d'une part de corriger une mauvaise détection et d'autre part d'améliorer l'estimation retournée de la pose pour répondre à un objectif souhaité.