Linear Estimation Formula


Download Linear Estimation Formula PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Estimation Formula book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Probability and Stochastic Processes


Probability and Stochastic Processes

Author: Roy D. Yates

language: en

Publisher: John Wiley & Sons

Release Date: 2014-01-28


DOWNLOAD





This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first five chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.

Control and Estimation of Systems with Input/Output Delays


Control and Estimation of Systems with Input/Output Delays

Author: Huanshui Zhang

language: en

Publisher: Springer

Release Date: 2007-09-05


DOWNLOAD





Time delays exist in many engineering systems such as transportation, communication, process engineering and networked control systems. In recent years, time delay systems have attracted recurring interests from research community. Much of the effort has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov-Krasovskii functional together with a linear matrix inequality approach, which provides an efficient numerical tool for handling systems with delays in state and/or inputs. Recently, some more interesting and fundamental development for systems with input/output (i/o) delays has been made using time domain or frequency domain approaches. These approaches lead to analytical solutions to time delay problems in terms of Riccati equations or spectral factorizations. This monograph presents simple analytical solutions to control and estimation problems for systems with multiple i/o delays via elementary tools such as projection. We propose a re-organized innovation analysis approach for delay systems and establish a duality between optimal control of systems with multiple input delays and smoothing estimation for delay free systems. These appealing new techniques are applied to solve control and estimation problems for systems with multiple i/o delays and state delays under both the H2 and H-infinity performance criteria.

Introduction to Probability


Introduction to Probability

Author: Dimitri Bertsekas

language: en

Publisher: Athena Scientific

Release Date: 2008-07-01


DOWNLOAD





An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.