Lattice Points

Download Lattice Points PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lattice Points book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Area, Lattice Points, and Exponential Sums

In analytic number theory a large number of problems can be "reduced" to problems involving the estimation of exponential sums in one or several variables. This book is a thorough treatment of the developments arising from the method developed by Bombieri and Iwaniec in 1986 for estimating the Riemann zeta function on the line *s = 1/2. Huxley and his coworkers (mostly Huxley) have taken this method and vastly extended and improved it. The powerful techniques presented here go considerably beyond older methods for estimating exponential sums such as van de Corput's method. The potential for the method is far from being exhausted, and there is considerable motivation for other researchers to try to master this subject. However, anyone currently trying to learn all of this material has the formidable task of wading through numerous papers in the literature. This book simplifies that task by presenting all of the relevant literature and a good part of the background in one package. The audience for the book will be mathematics graduate students and faculties with a research interest in analytic theory; more specifically, those with an interest in exponential sum methods. The book is self-contained; any graduate student with a one semester course in analytic number theory should have a more than sufficient background.
Lattice Point Identities and Shannon-Type Sampling

Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.