Introduction To Tale Cohomology

Download Introduction To Tale Cohomology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Tale Cohomology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Étale Cohomology

Author: Günter Tamme
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Étale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Étale Cohomology, and Étale Cohomology of Curves.
Etale Cohomology and the Weil Conjecture

Author: Eberhard Freitag
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjec tures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as self contained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work.
Étale Cohomology

Author: James S. Milne
language: en
Publisher: Princeton University Press
Release Date: 2025-04-08
An authoritative introduction to the essential features of étale cohomology A. Grothendieck’s work on algebraic geometry is one of the most important mathematical achievements of the twentieth century. In the early 1960s, he and M. Artin introduced étale cohomology to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry but also in several different branches of number theory and in the representation theory of finite and p-adic groups. In this classic book, James Milne provides an invaluable introduction to étale cohomology, covering the essential features of the theory. Milne begins with a review of the basic properties of flat and étale morphisms and the algebraic fundamental group. He then turns to the basic theory of étale sheaves and elementary étale cohomology, followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Milne proves the fundamental theorems in étale cohomology—those of base change, purity, Poincaré duality, and the Lefschetz trace formula—and applies these theorems to show the rationality of some very general L-series.