Introduction To Dynamical Models In Biology


Download Introduction To Dynamical Models In Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Dynamical Models In Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dynamic Models in Biology


Dynamic Models in Biology

Author: Stephen P. Ellner

language: en

Publisher: Princeton University Press

Release Date: 2011-09-19


DOWNLOAD





From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Dynamical Models in Biology


Dynamical Models in Biology

Author: Miklós Farkas

language: en

Publisher: Academic Press

Release Date: 2001-06-15


DOWNLOAD





Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists. Key Topics Include: - Chaotic dynamics of populations - The spread of sexually transmitted diseases - Problems of the origin of life - Models of immunology - Formation of animal hide patterns - The intuitive meaning of mathematical formulae explained with many figures - Applying new mathematical results in modeling biological phenomena Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education. - A 'down-to-earth' introduction to the growing field of modern mathematical biology - Also includes appendices which provide background material that goes beyond advanced calculus and linear algebra

Dynamical Modeling of Biological Systems


Dynamical Modeling of Biological Systems

Author: Stilianos Louca

language: en

Publisher: Stilianos Louca

Release Date: 2023-06-07


DOWNLOAD





This book introduces concepts and practical tools for dynamical mathematical modeling of biological systems. Dynamical models describe the behavior of a system over time as a result of internal feedback loops and external forcing, based on mathematically formulated dynamical laws, similarly to how Newton's laws describe the movement of celestial bodies. Dynamical models are increasingly popular in biology, as they tend to be more powerful than static regression models. This book is meant for undergraduate and graduate students in physics, applied mathematics and data science with an interest in biology, as well as students in biology with a strong interest in mathematical methods. The book covers deterministic models (for example differential equations), stochastic models (for example Markov chains and autoregressive models) and model-independent aspects of time series analysis. Plenty of examples and exercises are included, often taken or inspired from the scientific literature, and covering a broad range of topics such as neuroscience, cell biology, genetics, evolution, ecology, microbiology, physiology, epidemiology and conservation. The book delivers generic modeling techniques used across a wide range of situations in biology, and hence readers from other scientific disciplines will find that much of the material is also applicable in their own field. Proofs of most mathematical statements are included for the interested reader, but are not essential for a practical understanding of the material. The book introduces the popular scientific programming language MATLAB as a tool for simulating models, fitting models to data, and visualizing data and model predictions. The material taught is current as of MATLAB version 2022b. The material is taught in a sufficiently general way that also permits the use of alternative programming languages.