How To Design Flexure Hinges

Download How To Design Flexure Hinges PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get How To Design Flexure Hinges book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Compliant Mechanisms

Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answ
Flexure Mechanism Design

Mechanism constitute the mechanical organs of machines. They are generally composed of rigid segments connected to each other by articulated joints. The function of the joints is to act as bearings, i.e. to constraint the relative motion of the segments it connects, while leaving a freedom of motion in some specific directions. Conventional mechanisms rely on sliding or rolling motions between solid bodies in order to fulfill the bearing function. Consequently, these bearings exhibit friction forcers limiting the motion precision, they require lubrication, they undergo wear, they produce debris and they have a limited lifetime. Flexure mechanisms rely on a radically different physical principle to fulfill the bearing function : the elastic deformation of beams and membranes. This gets around the above-mentioned limitations. The rigid segments of the mechanism are connected to each other via elastically deformable joints called flexures which are springs whose stiffnesses are designed to be very high in the directions where the joint has to constrain relative motion and very flexile in the directions where freedom of motion is required. As a result, mechanisms can be manufactured monolithically and, by proper choice of materials and geometry of the flexures, lead to lifetimes of tens of millions of cycles without any wear or change in the geometry or forces of motion. Thanks to these unique properties flexure mechanisms have become an inescapable technology in all environments where friction, lubrication, wear, debris or mechanical backlash are forbidden : outer space, vacuum, cryogenics, high radiation, ultra-clean environments, etc. This book comes within the scope of this technological evolution. It gathers the knowledge of experts in flexure mechanisms design having worked in the key fields of high precision robotics, aerospace mechanisms, particle accelerators and watch making industry. It is dedicated to engineers, scientists and students working in these fields. The book presents the basic principles underlying flexure mechanism design, the most important flexures and the key formulas for their proper design. It also covers more general aspects of the kinematic design of multi-degrees of freedom mechanism exploiting the state of the art approaches of parallel kinematics. A wide variety of concrete examples of systems designed based on theses approaches are presented in details. in the directions where the joint has to constrain relative motion and very flexile in the directions where freedom of motion is required. As a result, mechanisms can be manufactured monolithically and, by proper choice of materials and geometry of the flexures, lead to lifetimes of tens of millions of cycles without any wear or change in the geometry or forces of motion. Thanks to these unique properties flexure mechanisms have become an inescapable technology in all environments where friction, lubrication, wear, debris or mechanical backlash are forbidden : outer space, vacuum, cryogenics, high radiation, ultra-clean environments, etc. This book comes within the scope of this technological evolution. It gathers the knowledge of experts in flexure mechanisms design having worked in the key fields of high precision robotics, aerospace mechanisms, particle accelerators and watch making industry. It is dedicated to engineers, scientists and students working in these fields. The book presents the basic principles underlying flexure mechanism design, the most important flexures and the key formulas for their proper design. It also covers more general aspects of the kinematic design of multi-degrees of freedom mechanism exploiting the state of the art approaches of parallel kinematics. A wide variety of concrete examples of systems designed based on theses approaches are presented in details.les underlying flexure mechanism design, the most important flexures and the key formulas for their proper design. It also covers more general aspects of the kinematic design of multi-degrees of freedom mechanism exploiting the state of the art approaches of parallel kinematics. A wide variety of concrete examples of systems designed based on theses approaches are presented in details.
Handbook of Compliant Mechanisms

A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories of compliant mechanisms, and an example of how the Compendium can be used to facilitate compliant mechanism design. Fully illustrated throughout to be easily understood and accessible at introductory levels Covers all aspects pertaining to classification, elements, mechanisms and applications of compliant mechanisms Summarizes a vast body of knowledge in easily understood diagrams and explanations Helps readers appreciate the advantages that compliant mechanisms have to offer Practical approach is ideal for potential practitioners who would like to realize designs with compliant mechanisms, members and elements Breadth of topics covered also makes the book a useful reference for more advanced readers Intended as an introduction to the area, the Handbook avoids technical jargon to assist non engineers involved in product design, inventors and engineers in finding clever solutions to problems of design and function.