Generalized Least Squares

Download Generalized Least Squares PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Least Squares book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied Multivariate Analysis

Author: Neil H. Timm
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-06-21
Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to p- vide students and researchers with an introduction to statistical techniques for the ana- sis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous obser- tions from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data an- ysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text.
Transformation and Weighting in Regression

This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.
Linear Least Squares Computations

Presenting numerous algorithms in a simple algebraic form so that the reader can easilytranslate them into any computer language, this volume gives details of several methodsfor obtaining accurate least squares estimates. It explains how these estimates may beupdated as new information becomes available and how to test linear hypotheses.Linear Least Squares Computations features many structured exercises that guidethe reader through the available algorithms, plus a glossary of commonly used terms anda bibliography of supplementary reading ... collects "ancient" and modem results onlinear least squares computations in a convenient single source . . . develops the necessarymatrix algebra in the context of multivariate statistics . .. only makes peripheral use ofconcepts such as eigenvalues and partial differentiation .. . interprets canonical formsemployed in computation ... discusses many variants of the Gauss, Laplace-Schmidt,Givens, and Householder algorithms ... and uses an empirical approach for the appraisalof algorithms.Linear Least Squares Computations serves as an outstanding reference forindustrial and applied mathematicians, statisticians, and econometricians, as well as atext for advanced undergraduate and graduate statistics, mathematics, and econometricscourses in computer programming, linear regression analysis, and applied statistics.