Foundations Of Artificial Intelligence And Machine Learning


Download Foundations Of Artificial Intelligence And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Artificial Intelligence And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Artificial Intelligence Foundations


Artificial Intelligence Foundations

Author: Andrew Lowe

language: en

Publisher: BCS, The Chartered Institute for IT

Release Date: 2020-08-24


DOWNLOAD





In line with the BCS AI Foundation and Essentials certificates, this book guides you through the world of AI. You will learn how AI is being utilised today, and how it is likely to be used in the future. You will explore robotics and machine learning within the context of AI, and discover how the challenges AI presents are being addressed.

Artificial Intelligence and Machine Learning Fundamentals


Artificial Intelligence and Machine Learning Fundamentals

Author: Zsolt Nagy

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-12-12


DOWNLOAD





Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).

Theoretical Foundations of Artificial General Intelligence


Theoretical Foundations of Artificial General Intelligence

Author: Pei Wang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-08-31


DOWNLOAD





This book is a collection of writings by active researchers in the field of Artificial General Intelligence, on topics of central importance in the field. Each chapter focuses on one theoretical problem, proposes a novel solution, and is written in sufficiently non-technical language to be understandable by advanced undergraduates or scientists in allied fields. This book is the very first collection in the field of Artificial General Intelligence (AGI) focusing on theoretical, conceptual, and philosophical issues in the creation of thinking machines. All the authors are researchers actively developing AGI projects, thus distinguishing the book from much of the theoretical cognitive science and AI literature, which is generally quite divorced from practical AGI system building issues. And the discussions are presented in a way that makes the problems and proposed solutions understandable to a wide readership of non-specialists, providing a distinction from the journal and conference-proceedings literature. The book will benefit AGI researchers and students by giving them a solid orientation in the conceptual foundations of the field (which is not currently available anywhere); and it would benefit researchers in allied fields by giving them a high-level view of the current state of thinking in the AGI field. Furthermore, by addressing key topics in the field in a coherent way, the collection as a whole may play an important role in guiding future research in both theoretical and practical AGI, and in linking AGI research with work in allied disciplines