Finite Element Analysis And Experimental Validation Of Incremental Sheet Metal Analysis Forming Process


Download Finite Element Analysis And Experimental Validation Of Incremental Sheet Metal Analysis Forming Process PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Element Analysis And Experimental Validation Of Incremental Sheet Metal Analysis Forming Process book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Finite Element Analysis and Experimental Validation of Incremental Sheet Metal Analysis Forming Process


Finite Element Analysis and Experimental Validation of Incremental Sheet Metal Analysis Forming Process

Author: Salah Basheer M. Echrif

language: en

Publisher:

Release Date: 2014


DOWNLOAD





In this thesis, the main focus was on development and enhancement of a non conventional metal forming process called dieless forming or incremental sheet forming that needs further investigations. Incremental sheet forming (ISF) is an emerging metal-forming technology in which the tool motion is controlled numerically. A review of the present state-of-the-art technologies and the potential applications of incremental sheet metal forming are presented to address the approaches and methods that are prevalently applied and to be a guide to identify inadequacies of the current approaches and potential for valuable contributions. Before conducting the experiments, numerical simulation was done to test the capabilities and limitations of the finite element method at simulating the ISF process. The numerical simulations were carried out with regard to the overstretching in depth phenomena, the forming strategy and the evolution of temperature during the process. ISF is complex due to the number of variables involved. Thus, it is not possible to consider that the process has been well assessed; several remaining aspects need to be clarified. Therefore, the effects of some relevant process parameters on thickness and surface roughness variation have been studied experimentally and statistically in order to optimize and enhance the process quality. In terms of sheet thickness, several forming passes were investigated, which has not been done before, by using Taguchi method. It was found according to the characteristic parameters that part slope plays a great role. In terms of surface roughness, investigations have shown that the most important factors influencing the surface roughness are the tool size and the step size. These two studies have led to the derivation of two predictive models that could be used to estimate the final quality of the formed part in terms of thickness distribution and surface roughness, respectively. Furthermore, a new forming strategy was developed to enable ISF to form a cylindrical cup with a higher depth like in deep drawing. In this research, a cup with height more than half of its diameter has been formed. In the conventional processes, temperature is a significant factor while forming. Thus, heat and maximum temperature were investigated in every ISF forming step in order to compare it to the conventional forming processes by using infrared/thermo-graphic camera. It was found that the temperature effect could be neglected due to the very low temperature values measured during the process. The numerical results in terms of sheet thickness distribution and temperature were in close agreement with the experimental results. Thus, the developed simulation module can be used as a design tool which can save time and cost when making prototypes using ISF.

Modelling and Simulation of Sheet Metal Forming Processes


Modelling and Simulation of Sheet Metal Forming Processes

Author: Marta C. Oliveira

language: en

Publisher: MDPI

Release Date: 2020-04-22


DOWNLOAD





The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.

Analysis and Optimization of Sheet Metal Forming Processes


Analysis and Optimization of Sheet Metal Forming Processes

Author: Amrut Mulay

language: en

Publisher: CRC Press

Release Date: 2024-06-13


DOWNLOAD





Analysis and Optimization of Sheet Metal Forming Processes comprehensively covers sheet metal forming, from choosing materials, tools and the forming method to optimising the entire process through finite element analysis and computer-aided engineering. Beginning with an introduction to sheet metal forming, the book provides a guide to the various techniques used within the industry. It provides a discussion of sheet metal properties relevant to forming processes, such as ductility, formability, and strength, and analyses how materials should be selected with factors including material properties, cost, and availability. Forming processes including shearing, bending, deep drawing, and stamping are also discussed, along with tools such as dies, punches, and moulds. Simulation and modelling are key to optimising the sheet metal forming process, including finite element analysis and computer-aided engineering. Other topics included are quality control, design, industry applications, and future trends. The book will be of interest to students and professionals working in the field of sheet metal and metal forming, materials science, mechanical engineering, and metallurgy.