Exploratory Data Analysis With Python Book


Download Exploratory Data Analysis With Python Book PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploratory Data Analysis With Python Book book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Exploratory Data Analysis with Python


Hands-On Exploratory Data Analysis with Python

Author: Suresh Kumar Mukhiya

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-03-27


DOWNLOAD





Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.

Exploratory Data Analysis with Python Cookbook


Exploratory Data Analysis with Python Cookbook

Author: Ayodele Oluleye

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-06-30


DOWNLOAD





Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide Purchase of the print or Kindle book includes a free PDF eBook Key Features Gain practical experience in conducting EDA on a single variable of interest in Python Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn Book DescriptionIn today's data-centric world, the ability to extract meaningful insights from vast amounts of data has become a valuable skill across industries. Exploratory Data Analysis (EDA) lies at the heart of this process, enabling us to comprehend, visualize, and derive valuable insights from various forms of data. This book is a comprehensive guide to Exploratory Data Analysis using the Python programming language. It provides practical steps needed to effectively explore, analyze, and visualize structured and unstructured data. It offers hands-on guidance and code for concepts such as generating summary statistics, analyzing single and multiple variables, visualizing data, analyzing text data, handling outliers, handling missing values and automating the EDA process. It is suited for data scientists, data analysts, researchers or curious learners looking to gain essential knowledge and practical steps for analyzing vast amounts of data to uncover insights. Python is an open-source general purpose programming language which is used widely for data science and data analysis given its simplicity and versatility. It offers several libraries which can be used to clean, analyze, and visualize data. In this book, we will explore popular Python libraries such as Pandas, Matplotlib, and Seaborn and provide workable code for analyzing data in Python using these libraries. By the end of this book, you will have gained comprehensive knowledge about EDA and mastered the powerful set of EDA techniques and tools required for analyzing both structured and unstructured data to derive valuable insights.What you will learn Perform EDA with leading python data visualization libraries Execute univariate, bivariate and multivariate analysis on tabular data Uncover patterns and relationships within time series data Identify hidden patterns within textual data Learn different techniques to prepare data for analysis Overcome challenge of outliers and missing values during data analysis Leverage automated EDA for fast and efficient analysis Who this book is forWhether you are a data analyst, data scientist, researcher or a curious learner looking to analyze structured and unstructured data, this book will appeal to you. It aims to empower you with essential knowledge and practical skills for analyzing and visualizing data to uncover insights. It covers several EDA concepts and provides hands-on instructions on how these can be applied using various Python libraries. Familiarity with basic statistical concepts and foundational knowledge of python programming will help you understand the content better and maximize your learning experience.

Become a Python Data Analyst


Become a Python Data Analyst

Author: Alvaro Fuentes

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-08-31


DOWNLOAD





Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book