Evolutionary Optimization Algorithms Pdf

Download Evolutionary Optimization Algorithms Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Evolutionary Optimization Algorithms Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Evolutionary Optimization Algorithms

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.
New Optimization Techniques in Engineering

Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.