Discrete Time Systems And Signal Processing

Download Discrete Time Systems And Signal Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Time Systems And Signal Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discrete-time Signal Processing

Índice: 1. Introduction. 2. Discrete-Time Signals and Systems. Introduction. Discrete-time Signals: Sequences. Discrete-time Systems. Linear Time-Invariant Systems. Properties of Linear Time-Invariant Systems. Linear Constant-Coefficient Difference Equations. Frequency-Domain Representation of Discrete-Time Signals and Systems. Representation of Sequence by Fourier Transforms. Symmetry Properties of the Fourier Transform. Fourier Transform Theorems. Discrete-Time Random Signals. Summary. 3. The z-Transform. Introduction. The z-Transform. Properties of the Region of Convergence for the z-Transform. The Inverse z-Transform. z-Transform Properties. Summary. 4. Sampling of Continuous-Time Signals. Introduction. Periodic Sampling. Frequency-Domain Representation of Sampling. Reconstruction of a Bandlimited Signal from its Samples. Discrete-Time Processing of Continuous-Time Signals. Continuous-Time Processing of Discrete-Time Signals. Changing the Sampling Rate Using Discrete-Time Processing. Practical Considerations. Oversampling and Noise Shaping. Summary. 5. Transform Analysis of Linear Time-Invariant Systems. Introduction. The Frequency Response of LTI Systems. System Functions for Systems Characterized by Linea. Frequency Response for Rational System Functions. Relationship Between Magnitude and Phase. All-Pass Systems. Minimum-Phase Systems. Linear Systems with Generalized Linear Phase. Summary. 6. Structures for Discrete-Time Systems. Introduction. Block Diagram Representation of Linear Constant-Coefficient Difference Equations. Signal Flow Graph Representation of Linear Constant-Coefficient Difference Equations. Basic Structures for IIR Systems. Transposed Forms. Basic Network Structures for FIR Systems. Overview of Finite-Precision Numerical Effects. The Effects of Coefficient Quantization. Effects of Roundoff Noise in Digital Filters. Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters. Summary. 7. Filter Design Techniques. Introduction. Design of Discrete-Time IIR Filters from Continuous-Time Filters. Design of FIR Filters by Windowing. Examples of FIR Filter Design by the Kaiser Window Method. Optimum Approximations of FIR Filters. Examples of FIR Equiripple Approximation. Comments on IIR and FIR Digital Filters. Summary. 8. The Discrete Fourier Transform. Introduction. Representation of Periodic Sequences: the Discrete Fourier Series. Summary of Properties of the DFS Representation of Periodic Sequences. The Fourier Transform of Periodic Signals. Sampling the Fourier Transform. Fourier Representation of Finite-Duration Sequences: The Discrete-Fourier Transform. Properties of the Discrete Fourier Transform. Summary of Properties of the Discrete Fourier Transform. Linear Convolution Using the Discrete Fourier Transform. The Discrete Cosine Transform (DCT). Summary. 9. Computation of the Discrete Fourier Transform. Introduction.
Discrete Time Systems and Signal Processing

This book is designed to serve as a textbook for courses offered to undergraduate students enrolled in the Electrical, Electronics, Communications, and Instrumentation Engineering disciplines. The book presents a clear and comprehensive introduction to digital signal processing. For easier comprehension, the course contents of all the chapters are in sequential order. A variety of examples and solved problems are included in the book to enable application and ease of understanding of theoretical concepts. Every chapter contains several homework problems with answers followed by question-and-answer-type assignments. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in electrical engineering and related programs.
Discrete Time Systems and Signal Processing

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor. Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.