Deep Signal Ai

Download Deep Signal Ai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Signal Ai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning

Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing

The book provides details regarding the application of various signal processing and artificial intelligence-based methods for electroencephalography data analysis. It will help readers in understanding the use of electroencephalography signals for different neural information processing and cognitive neuroscience applications. The book: Covers topics related to the application of signal processing and machine learning-based techniques for the analysis and classification of electroencephalography signals Presents automated methods for detection of neurological disorders and other applications such as cognitive task recognition, and brain-computer interface Highlights the latest machine learning and deep learning methods for neural signal processing Discusses mathematical details for the signal processing and machine learning algorithms applied for electroencephalography data analysis Showcases the detection of dementia from electroencephalography signals using signal processing and machine learning-based techniques It is primarily written for senior undergraduates, graduate students, and researchers in the fields of electrical engineering, electronics and communications engineering, and biomedical engineering.
Deep Learning for Radar and Communications Automatic Target Recognition

This authoritative resource presents a comprehensive illustration of modern Artificial Intelligence / Machine Learning (AI/ML) technology for radio frequency (RF) data exploitation. It identifies technical challenges, benefits, and directions of deep learning (DL) based object classification using radar data, including synthetic aperture radar (SAR) and high range resolution (HRR) radar. The performance of AI/ML algorithms is provided from an overview of machine learning (ML) theory that includes history, background primer, and examples. Radar data issues of collection, application, and examples for SAR/HRR data and communication signals analysis are discussed. In addition, this book presents practical considerations of deploying such techniques, including performance evaluation, energy-efficient computing, and the future unresolved issues.