Continuous Optimization Methods For Onvex Mixed Integer Nonlinear Programming


Download Continuous Optimization Methods For Onvex Mixed Integer Nonlinear Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Continuous Optimization Methods For Onvex Mixed Integer Nonlinear Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mixed Integer Nonlinear Programming


Mixed Integer Nonlinear Programming

Author: Jon Lee

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-12-02


DOWNLOAD





Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Introduction to Continuous Optimization


Introduction to Continuous Optimization

Author: Roman A. Polyak

language: en

Publisher: Springer Nature

Release Date: 2021-04-29


DOWNLOAD





This self-contained monograph presents the reader with an authoritative view of Continuous Optimization, an area of mathematical optimization that has experienced major developments during the past 40 years. The book contains results which have not yet been covered in a systematic way as well as a summary of results on NR theory and methods developed over the last several decades. The readership is aimed to graduate students in applied mathematics, computer science, economics, as well as researchers working in optimization and those applying optimization methods for solving real life problems. Sufficient exercises throughout provide graduate students and instructors with practical utility in a two-semester course in Continuous Optimization. The topical coverage includes interior point methods, self-concordance theory and related complexity issues, first and second order methods with accelerated convergence, nonlinear rescaling (NR) theory and exterior point methods, just to mention a few. The book contains a unified approach to both interior and exterior point methods with emphasis of the crucial duality role. One of the main achievements of the book shows what makes the exterior point methods numerically attractive and why. The book is composed in five parts. The first part contains the basics of calculus, convex analysis, elements of unconstrained optimization, as well as classical results of linear and convex optimization. The second part contains the basics of self-concordance theory and interior point methods, including complexity results for LP, QP, and QP with quadratic constraint, semidefinite and conic programming. In the third part, the NR and Lagrangian transformation theories are considered and exterior point methods are described. Three important problems in finding equilibrium are considered in the fourth part. In the fifth and final part of the book, several important applications arising in economics, structural optimization, medicine, statistical learning theory, and more, are detailed. Numerical results, obtained by solving a number of real life and test problems, are also provided.