Computational Solid State Physics

Download Computational Solid State Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Solid State Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introductory Solid State Physics with MATLAB Applications

Solid state physics, the study and prediction of the fundamental physical properties of materials, forms the backbone of modern materials science and has many technological applications. The unique feature of this text is the MATLAB®-based computational approach with several numerical techniques and simulation methods included. This is highly effective in addressing the need for visualization and a direct hands-on approach in learning the theoretical concepts of solid state physics. The code is freely available to all textbook users. Additional Features: Uses the pedagogical tools of computational physics that have become important in enhancing physics teaching of advanced subjects such as solid state physics Adds visualization and simulation to the subject in a way that enables students to participate actively in a hand-on approach Covers the basic concepts of solid state physics and provides students with a deeper understanding of the subject matter Provides unique example exercises throughout the text Obtains mathematical analytical solutions Carries out illustrations of important formulae results using programming scripts that students can run on their own and reproduce graphs and/or simulations Helps students visualize solid state processes and apply certain numerical techniques using MATLAB®, making the process of learning solid state physics much more effective Reinforces the examples discussed within the chapters through the use of end-of-chapter exercises Includes simple analytical and numerical examples to more challenging ones, as well as computational problems with the opportunity to run codes, create new ones, or modify existing ones to solve problems or reproduce certain results
Computational Solid State Physics

Author: F. Herman
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-08
During the past 20 years, solid state physics has become one of the major branches of physics. 1-2 Today over one-third of all scientific articles published in physics deal with solid state 3 topics. During the last two decades, there has also been ra~id growth of scientific computation in a wide variety of fields. -5 The combination of solid state physics and comp~tation may be termed computational solid state physics. This emerging field is distin guished from theoretical solid state physics only to the extent that electronic computers rather than slide rules or backs of envelopes are used to solve numerical or logical problems, test scientific hypotheses, and discover the essential physical content of formal mathematical theories. Papers in computational solid state physics are widely scatter ed in the literature. They can be found in the traditional physics journals and review series, such as The Physical Review and Solid State Physics; in more specialized publications, such as Journal of Computational Physics, Computer Physics Communications, and Methods in Computational Physics; and in the proceedings of a number of re 6 9 cent conferences and seminar courses. - Plans for holding an International Symposium on Computational Solid State Physics in early October 1971 were formulated by Dr.
Computational Methods in Solid State Physics

The combination of theoretical physics methods, numerical mathematics and computers has given rise to a new field of physics known as "computational physics." The purpose of this monograph is to present the various methods of computational physics, in particular the methods of band theory. The first chapter of the book provides an introduction to the field and presents the theoretical foundations of band theory. In the second and third chapters the authors describe both traditional and more modern methods of band theory and include practical recommendations for their use. Methods which are discussed include APW (augmented plane wave), Green's function method, LMTO (linear method of MT- orbitals), LKKR (linear Korringer, Kohn and Rostocker method), LAPW (linear augmented plane wave), ASW (augmented spherical waves), and LASO (linear method of augmented Slater orbitals). Great attention is paid to the practical aspects of these theories and the book is structured in such a way as to enable the reader to use any method in practice without reference to other sources.