Computational Fractional Dynamical Systems


Download Computational Fractional Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Fractional Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Fractional Dynamical Systems


Computational Fractional Dynamical Systems

Author: Snehashish Chakraverty

language: en

Publisher: John Wiley & Sons

Release Date: 2022-11-01


DOWNLOAD





Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. Covers various aspects of efficient methods regarding fractional-order systems Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering Provides a systematic approach for handling fractional-order models arising in science and engineering Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.

Computational Fractional Dynamical Systems


Computational Fractional Dynamical Systems

Author: Snehashish Chakraverty

language: en

Publisher: John Wiley & Sons

Release Date: 2022-10-18


DOWNLOAD





Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. Covers various aspects of efficient methods regarding fractional-order systems Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering Provides a systematic approach for handling fractional-order models arising in science and engineering Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.

Computation and Modeling for Fractional Order Systems


Computation and Modeling for Fractional Order Systems

Author: Snehashish Chakraverty

language: en

Publisher: Elsevier

Release Date: 2024-02-20


DOWNLOAD





Computation and Modeling for Fractional Order Systems provides readers with problem-solving techniques for obtaining exact and/or approximate solutions of governing equations arising in fractional dynamical systems presented using various analytical, semi-analytical, and numerical methods. In this regard, this book brings together contemporary and computationally efficient methods for investigating real-world fractional order systems in one volume. Fractional calculus has gained increasing popularity and relevance over the last few decades, due to its well-established applications in various fields of science and engineering. It deals with the differential and integral operators with non-integral powers. Fractional differential equations are the pillar of various systems occurring in a wide range of science and engineering disciplines, namely physics, chemical engineering, mathematical biology, financial mathematics, structural mechanics, control theory, circuit analysis, and biomechanics, among others. The fractional derivative has also been used in various other physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, PID controller for the control of dynamical systems, and many others. The mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. Generally, these physical models are demonstrated either by ordinary or partial differential equations. However, modeling these problems by fractional differential equations, on the other hand, can make the physics of the systems more feasible and practical in some cases. In order to know the behavior of these systems, we need to study the solutions of the governing fractional models. The exact solution of fractional differential equations may not always be possible using known classical methods. Generally, the physical models occurring in nature comprise complex phenomena, and it is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear differential equations of fractional order. Various aspects of mathematical modeling that may include deterministic or uncertain (viz. fuzzy or interval or stochastic) scenarios along with fractional order (singular/non-singular kernels) are important to understand the dynamical systems. Computation and Modeling for Fractional Order Systems covers various types of fractional order models in deterministic and non-deterministic scenarios. Various analytical/semi-analytical/numerical methods are applied for solving real-life fractional order problems. The comprehensive descriptions of different recently developed fractional singular, non-singular, fractal-fractional, and discrete fractional operators, along with computationally efficient methods, are included for the reader to understand how these may be applied to real-world systems, and a wide variety of dynamical systems such as deterministic, stochastic, continuous, and discrete are addressed by the authors of the book.