Change Point Analysis For Time Series

Download Change Point Analysis For Time Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Change Point Analysis For Time Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Change Point Analysis

Change point analysis is a crucial statistical technique for detecting structural breaks within datasets, applicable in diverse fields such as finance and weather forecasting. The authors of this book aim to consolidate recent advancements and broaden the scope beyond traditional time series applications to include biostatistics, longitudinal data analysis, high-dimensional data, and network analysis. The book introduces foundational concepts with practical data examples from literature, alongside discussions of related machine learning topics. Subsequent chapters focus on mathematical tools for single- and multiple-change point detection along with statistical inference issues, which provide rigorous proofs to enhance understanding but assume readers have foundational knowledge in graduate-level probability and statistics. The book also expands the discussion into threshold regression frameworks linked to subgroup identification in modern statistical learning and apply change point analysis to functional data and dynamic networks—areas not comprehensively covered elsewhere. Key Features: Comprehensive Coverage of Diverse Applications: This book expands the scope of change point analysis to include biostatistics, longitudinal data, high-dimensional data, and network analysis. This broad applicability makes it a valuable resource for researchers and students across various disciplines Integration of Theory and Practice: The book balances rigorous mathematical theory with practical applications by providing extensive computational examples using R. Each chapter features real-world data illustrations and discussions of relevant machine learning topics, ensuring that readers can see the relevance of theoretical concepts in applied settings Accessibility for Students: The content is designed with graduate-level students in mind, providing clear explanations and structured guidance through complex mathematical tools. Rigorous proofs are included to facilitate understanding without overwhelming readers with overly advanced theories early on The book incorporates computational results using R, showcasing various packages tailored for specific methods or problem domains while providing references for further exploration. By offering a selection of widely adopted methodologies relevant in scientific research as well as business contexts, this text aims to equip junior researchers with essential tools needed for their work in change point analysis.
Change-Point Analysis in Nonstationary Stochastic Models

This book covers the development of methods for detection and estimation of changes in complex systems. These systems are generally described by nonstationary stochastic models, which comprise both static and dynamic regimes, linear and nonlinear dynamics, and constant and time-variant structures of such systems. It covers both retrospective and sequential problems, particularly theoretical methods of optimal detection. Such methods are constructed and their characteristics are analyzed both theoretically and experimentally. Suitable for researchers working in change-point analysis and stochastic modelling, the book includes theoretical details combined with computer simulations and practical applications. Its rigorous approach will be appreciated by those looking to delve into the details of the methods, as well as those looking to apply them.
Parametric Statistical Change Point Analysis

Author: Jie Chen
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-11-06
This revised and expanded second edition is an in-depth study of the change point problem from a general point of view, as well as a further examination of change point analysis of the most commonly used statistical models. Change point problems are encountered in such disciplines as economics, finance, medicine, psychology, signal processing, and geology, to mention only several. More recently, change point analysis has been found in extensive applications related to analyzing biomedical imaging data and gene expression data. Extensive examples throughout the text emphasize key concepts and different methodologies used. New examples of change point analysis in modern molecular biology and other fields such as finance and air traffic control have been added to this second edition.