At Random Synonym


Download At Random Synonym PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get At Random Synonym book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Pattern Recognition


Pattern Recognition

Author: Apostolos Antonacopoulos

language: en

Publisher: Springer Nature

Release Date: 2024-12-10


DOWNLOAD





The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1–5, 2024. The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

LLM Design Patterns


LLM Design Patterns

Author: Ken Huang

language: en

Publisher: Packt Publishing Ltd

Release Date: 2025-05-30


DOWNLOAD





Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques Key Features Learn comprehensive LLM development, including data prep, training pipelines, and optimization Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents Implement evaluation metrics, interpretability, and bias detection for fair, reliable models Print or Kindle purchase includes a free PDF eBook Book DescriptionThis practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment. You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems. By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values. What you will learn Implement efficient data prep techniques, including cleaning and augmentation Design scalable training pipelines with tuning, regularization, and checkpointing Optimize LLMs via pruning, quantization, and fine-tuning Evaluate models with metrics, cross-validation, and interpretability Understand fairness and detect bias in outputs Develop RLHF strategies to build secure, agentic AI systems Who this book is for This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.

Knowledge Science, Engineering and Management


Knowledge Science, Engineering and Management

Author: Gang Li

language: en

Publisher: Springer Nature

Release Date: 2020-08-20


DOWNLOAD





This two-volume set of LNAI 12274 and LNAI 12275 constitutes the refereed proceedings of the 13th International Conference on Knowledge Science, Engineering and Management, KSEM 2020, held in Hangzhou, China, in August 2020.* The 58 revised full papers and 27 short papers were carefully reviewed and selected from 291 submissions. The papers of the first volume are organized in the following topical sections: knowledge graph; knowledge representation; knowledge management for education; knowledge-based systems; and data processing and mining. The papers of the second volume are organized in the following topical sections: machine learning; recommendation algorithms and systems; social knowledge analysis and management; text mining and document analysis; and deep learning. *The conference was held virtually due to the COVID-19 pandemic.