Applications De L Intelligence Artificielle La D Tection Et L Isolation De Pannes Multiples Dans Un R Seau De T L Communications

Download Applications De L Intelligence Artificielle La D Tection Et L Isolation De Pannes Multiples Dans Un R Seau De T L Communications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications De L Intelligence Artificielle La D Tection Et L Isolation De Pannes Multiples Dans Un R Seau De T L Communications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Tolérance aux pannes dans un réseau de capteurs sans fil multi-canal

Le développement dans les micros systèmes électromécaniques (MEMS) combiné avec l'émergence des nouvelles technologies de l'information et de la communication a permis l'intégration des fonctionnalités de collecte, de traitement et de transmission des données dans un seul dispositif minuscule qui est le capteur sans fil. En voie de conséquence, les réseaux composés de ces capteurs offrent aujourd'hui une pléiade d'avantages par rapport aux réseaux traditionnels notamment en termes de simplicité et de coût de déploiement. Ceci a conduit au développement d'une gamme très variée d'applications des réseaux de capteurs sans fil dans les domaines de la santé, de l'environnement, de l'industrie, des infrastructures, des activités spatiales, ou encore des activités militaires et dans plusieurs autres domaines. Cependant, de nouveaux défis surgissent des caractéristiques particulières de ces réseaux. En réalité, de nombreuses applications de ces réseaux sont critiques et exigent qu'un fonctionnement correct du réseau soit maintenu le plus longtemps possible. Par contre, les environnements dans lesquels ces réseaux sont déployés rendent la mission de maintien en condition correcte de ces réseaux très compliquée et même parfois impossible ; d'où la nécessité d'intégrer des mécanismes d'auto-correction qui visent à surmonter les problèmes qui puissent surgir dans le réseau sans intervention humaine. Dans ce contexte, nous avons, dans cette thèse, concentré notre étude sur les techniques et les mécanismes mis en œuvre pour améliorer la propriété de tolérance aux pannes dans les réseaux de capteurs sans fil. Tout d'abord, nous avons proposé des approches centralisées et distribuées pour l'auto-rétablissement de la connectivité et la réallocation des canaux dans un contexte de réseaux de capteurs sans fil reposant sur des communications multi-canal après la panne d'un nœud critique. Après la formulation du problème sous la forme d'un problème d'optimisation multi-objectif, nous avons proposé des algorithmes basés sur des heuristiques de coloration de graphes et d'arbre de Steiner, très connus dans la théorie de graphes pour la résolution de ce type de problèmes. Dans une deuxième partie de cette thèse, nous avons étudié un cas d'application particulier, l'agriculture de précision, et avons proposé une solution distribuée pour le rétablissement du fonctionnement du réseau de capteurs sans fil.
Détection et isolation de pannes basées sur la platitude différentielle

Ce travail de thèse aborde le problème de la détection et de l'isolation des pannes à base de modèle du système dynamique non linéaire. Les techniques de détection et d'identification de pannes sont déjà appliquées aux systèmes industriels et elles jouent un rôle important pour assurer les performances attendues des systèmes automatiques. Les différentes approches du diagnostic des systèmes dynamiques semblent être souvent le résultat de contextes différents notamment en ce qui concerne les applications visées et le cahier des charges qui en résulte. Ainsi, la nature des informations disponibles sur le système ou le type de défauts à détecter conduit à la mise en œuvre de stratégies spécifiques. Dans cette étude on suppose disposer d'un modèle de fonctionnement du système et les pannes considérées sont celles qui conduisent le système à ne plus suivre ce modèle. Après avoir introduit la notion de platitude différentielle pour un système dynamique non linéaire continu, plusieurs exemples de systèmes dynamiques différentiellement plats sont introduits. Les redondances analytiques mises en évidence par cette propriété sont dans une première étape utilisées pour détecter des pannes. Ceci conduit à développer des estimateurs d'ordre supérieurs pour les dérivées des sorties plates du système et des estimateurs non linéaires de l'état du système. Cette approche est mise en œuvre dans le cadre de la détection de pannes des moteurs d'un Quadri-Rotor.La notion de platitude pour les systèmes dynamiques discrets est alors introduite. Il est alors possible de développer une nouvelle approche pour la détection des pannes, fondée sur la redondance temporelle entre les informations résultant des mesures directes de composantes du vecteur d'état du Quadri-Rotor et les estimations des sorties plates à chaque instant d'échantillonnage. Cette approche qui est illustrée ici aussi dans le cas du Quadri-Rotor, permet aussi de développer une méthode d'identification en ligne des pannes en se basant sur la chronologie de la propagation de leurs effets.
Détection et diagnostic des fautes dans des systèmes à base de réseaux de capteurs sans fils

Les pannes sont la règle et non l'exception dans les réseaux de capteurs sans fil. Un nœud capteur est fragile et il peut échouer en raison de l'épuisement de la batterie ou de la destruction par un événement externe. En outre, le nœud peut capter et transmettre des valeurs incorrectes en raison de l'influence de l'environnement sur son fonctionnement. Les liens sont également vulnérables et leur panne peut provoquer un partitionnement du réseau et un changement dans la topologie du réseau, ce qui conduit à une perte ou à un retard des données. Dans le cas où les nœuds sont portés par des objets mobiles, ils peuvent être mis hors de portée de la communication. Les réseaux de capteurs sont également sujets à des attaques malveillantes, telles que le déni de service, l'injection de paquets défectueux, entraînant un comportement inattendu du système et ainsi de suite. En plus de ces défaillances prédéfinies (c'est-à-dire avec des types et symptômes connus), les réseaux de capteurs présentent aussi des défaillances silencieuses qui ne sont pas connues à l'avance, et qui sont très liées au système. En revanche, les applications de RCSF, en particulier les applications de sécurité critiques, telles que la détection d'incendie ou les systèmes d'alarme, nécessitent un fonctionnement continu et fiable du système. Cependant, la garantie d'un fonctionnement correct d'un système pendant l'exécution est une tâche difficile. Cela est dû aux nombreux types de pannes que l'on peut rencontrer dans un tel système vulnérable et non fiable. Une approche holistique de la gestion des fautes qui aborde tous les types de fautes n'existe pas. En effet, les travaux existants se focalisent sur certains états d'incohérence du système. La raison en est simple : la consommation d'énergie augmente en fonction du nombre d'éléments à surveiller, de la quantité d'informations à collecter et parfois à échanger. Dans cette thèse, nous proposons un «Framework » global pour la gestion des fautes dans un réseau de capteurs. Ce framework, appelé « IFTF », fournit une vision complète de l'état du système avec la possibilité de diagnostiquer des phénomènes anormaux. IFTF détecte les anomalies au niveau des données, diagnostique les défaillances de réseau, détecte les défaillances d'applications, et identifie les zones affectées du réseau. Ces objectifs sont atteints grâce à la combinaison efficace d'un service de diagnostic réseau (surveillance au niveau des composants), un service de test d'applications (surveillance au niveau du système) et un système de validation des données. Les deux premiers services résident sur chaque nœud du réseau et le système de validation des données réside sur chaque chef de groupe. Grâce à IFTF, les opérations de maintenance et de reconfiguration seront plus efficaces, menant à un système WSN (Wireless Sensor Network) plus fiable. Du point de vue conception, IFTF fournit de nombreux paramètres ajustables qui le rendent approprié aux divers types d'applications. Les résultats de simulation montrent que la solution présentée est efficace en termes de coût mémoire et d'énergie. En effet, le système de validation des données n'induit pas un surcoût de communication. De plus, le fonctionnement des deux services test et diagnostic augmente la consommation d'énergie de 4% en moyenne, par rapport au fonctionnement du service de diagnostic uniquement.