An Open Map


Download An Open Map PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Open Map book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

General Topology


General Topology

Author: Vipul Kakkar

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2025-02-17


DOWNLOAD





This book is dedicated to metric spaces and their topology. The book starts with ZFC axioms. The real number system is constructed by both the Dedekind cut and the Cauchy sequence approach. The various examples and properties of metric spaces and normed linear spaces are discussed. The different distances between the sets are highlighted. The research work on metric-preserving maps and isometries on different p-norms has been discussed. Homeomorphism and different equivalent metrics have also been discussed. A detailed description of a metric on the product and the quotient set is also provided. The completion of a metric space as a universal property and applications of the Baire Category Theorem are covered. A special focus is on compactness and the relation between a compact metric space, the Hilbert Cube, and the Cantor set. The properties of connected and path-connected metric spaces are provided.

Topology and Its Applications


Topology and Its Applications

Author: William F. Basener

language: en

Publisher: John Wiley & Sons

Release Date: 2013-06-12


DOWNLOAD





Discover a unique and modern treatment of topology employing a cross-disciplinary approach Implemented recently to understand diverse topics, such as cell biology, superconductors, and robot motion, topology has been transformed from a theoretical field that highlights mathematical theory to a subject that plays a growing role in nearly all fields of scientific investigation. Moving from the concrete to the abstract, Topology and Its Applications displays both the beauty and utility of topology, first presenting the essentials of topology followed by its emerging role within the new frontiers in research. Filling a gap between the teaching of topology and its modern uses in real-world phenomena, Topology and Its Applications is organized around the mathematical theory of topology, a framework of rigorous theorems, and clear, elegant proofs. This book is the first of its kind to present applications in computer graphics, economics, dynamical systems, condensed matter physics, biology, robotics, chemistry, cosmology, material science, computational topology, and population modeling, as well as other areas of science and engineering. Many of these applications are presented in optional sections, allowing an instructor to customize the presentation. The author presents a diversity of topological areas, including point-set topology, geometric topology, differential topology, and algebraic/combinatorial topology. Topics within these areas include: Open sets Compactness Homotopy Surface classification Index theory on surfaces Manifolds and complexes Topological groups The fundamental group and homology Special "core intuition" segments throughout the book briefly explain the basic intuition essential to understanding several topics. A generous number of figures and examples, many of which come from applications such as liquid crystals, space probe data, and computer graphics, are all available from the publisher's Web site.

An Introduction to Algebraic Geometry and Algebraic Groups


An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

language: en

Publisher: Oxford University Press

Release Date: 2013-03-14


DOWNLOAD





An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.