Advanced Sensor Technology

Download Advanced Sensor Technology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Sensor Technology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Sensor Technology

Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies. - Covers a range of environmental applications such as protection and improvement of water, air, soil, plants, and agriculture and food production; biomedical applications including detection of viruses, genes, hormones, proteins, bacteria, and cancer, and applications in construction such as fire protection, automotive, robotics, food packing and micro-machining - Provides an outlook on opportunities and challenges for the fabrication and manufacturing of sensors in industry and their applicability for industrial uses - Demonstrates how cutting-edge developments in sensing technology translate into real-world innovations in a range of industry sectors
Optical Fiber Sensor Technology

Author: L.S. Grattan
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Systems and Applications in Optical Fiber Sensor Technology The essential technology which underpins developments in optical fiber sensors continues to expand, and continues to be driven to a very large extent by advances in optoelectronics which have been produced for the ever-expanding optical com munications systems and networks of the world. The steps forward in the technol ogy, often accompanied by a reduction in the price of associated components, have been, and continue to be, adapted for use in a wide variety of optical fiber sensor systems. These include, for example, the use of photoinduced gratings as fiber sensor components, coupled with the wider availability of shorter wavelength lasers, bright luminescent sources and high-sensitivity detectors which have opened up new possibilities for both novel fiber optic sensor applications and new sensing systems. This is to be welcomed at a time when, coupled with integrated optic miniaturized devices and detectors, real possibilities of systems integration, at lower cost and increased utility, can be offered. The fiber laser, and the expansions of the types and availability of the doped fiber on which it is based, offer further examples of the integration of the essential components of advanced optical sensor systems, fitted for a new range of applications.
Advanced Sensor and Detection Materials

Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.