Adapting Machine Learning To Non Stationary Environments

Download Adapting Machine Learning To Non Stationary Environments PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adapting Machine Learning To Non Stationary Environments book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning in Non-Stationary Environments

Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.
Learning in Non-Stationary Environments

Author: Moamar Sayed-Mouchaweh
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-04-13
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.
Adapting Machine Learning to Non-stationary Environments

Machine learning stimulates a broad range of computational methods that exploit experience, which typically takes the form of electronic data, to make profitable decisions or accurate predictions. To date, the machine learning models have been applied to extensive application domains across diverse fields, including but not limited to computer vision [1, 2, 3], natural language processing [4, 5, 6], robotic control [7, 8], and cyber security [9, 10, 11].