A New Mathematical And Philosophical Dictionary Comprising An Explanation Of The Terms And Principles Of Pure And Mixed Mathematics And Such Branches Of Natural Philosophy As Are Susceptible Of Mathematical Investigation With Historical Sketches


Download A New Mathematical And Philosophical Dictionary Comprising An Explanation Of The Terms And Principles Of Pure And Mixed Mathematics And Such Branches Of Natural Philosophy As Are Susceptible Of Mathematical Investigation With Historical Sketches PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A New Mathematical And Philosophical Dictionary Comprising An Explanation Of The Terms And Principles Of Pure And Mixed Mathematics And Such Branches Of Natural Philosophy As Are Susceptible Of Mathematical Investigation With Historical Sketches book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A New Mathematical and Philosophical Dictionary


A New Mathematical and Philosophical Dictionary

Author: Peter Barlow

language: en

Publisher:

Release Date: 1814


DOWNLOAD





Catalogue of the Library of the Great Seal Patent Office: Titles


Catalogue of the Library of the Great Seal Patent Office: Titles

Author: Great Britain. Patent Office. Library

language: en

Publisher:

Release Date: 1857


DOWNLOAD





Irrationality, Transcendence and the Circle-Squaring Problem


Irrationality, Transcendence and the Circle-Squaring Problem

Author: Eduardo Dorrego López

language: en

Publisher: Springer Nature

Release Date: 2023-03-07


DOWNLOAD





This publication includes an unabridged and annotated translation of two works by Johann Heinrich Lambert (1728–1777) written in the 1760s: Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen and Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques. The translations are accompanied by a contextualised study of each of these works and provide an overview of Lambert’s contributions, showing both the background and the influence of his work. In addition, by adopting a biographical approach, it allows readers to better get to know the scientist himself. Lambert was a highly relevant scientist and polymath in his time, admired by the likes of Kant, who despite having made a wide variety of contributions to different branches of knowledge, later faded into an undeserved secondary place with respect to other scientists of the eighteenth century. In mathematics, in particular, he is famous for his research on non-Euclidean geometries, although he is likely best known for having been the first who proved the irrationality of pi. In his Mémoire, he conducted one of the first studies on hyperbolic functions, offered a surprisingly rigorous proof of the irrationality of pi, established for the first time the modern distinction between algebraic and transcendental numbers, and based on such distinction, he conjectured the transcendence of pi and therefore the impossibility of squaring the circle.