In the second half of 2015, the American Math Society will publish a five volume (total about 3000 pages) set of books that is a graduate analysis text with lots of additional bonus material. Included are hundreds of problems and copious notes which extend the text and provide historical background. Efforts have been made to find simple and elegant proofs and to keeping the writing style clear.
Maximal functions and pointwise limits, harmonic functions and potential theory, phase space analysis, Hp spaces, more inequalities.
Selected topics include Hardy-Littlewood maximal function, von Neumann and Birkhoff ergodic theorems, Weyl equidistribution, ergodicity of Gauss (continued fraction) map, ergodicity of geodesic flow on certain Riemann surfaces, Kingman subadditive ergodic theorem, Ruelle–Oseledec theorem, martingale convergence theorem, subharmonic functions, Perron’s method, spherical harmonics, Frostman’s theorem, Kellogg-Evans theorem, potential theory on Riemann surfaces, pseudo-differential operators, coherent states, wavelets, BMO, real interpolation and Marcinkiewicz theorem, Hardy-Littlewood-Sobolev inequalities, Sobolev spaces, Calderón-Zygmund method, Calderón-Vaillancourt estimates, Hypercontractive and Log-Sobolev estimates, Lieb Thirring and CLR bounds, Tomas-Stein theorem.