Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems

ISBN: 0817644032

ISBN 13: 9780817644031

Publication Date: January 01, 2005

Publisher: Birkhauser Boston

Pages: 216

Authors: Dorin Bucur, Giuseppe Buttazzo

0.00 of 0

Click the button below to register a free account and download the file


Download PDF

Download ePub

*Disclosure:“This post may contain affiliate links and I earn from qualifying purchases”.


The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.